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1. Calculate the following real integrals (you might want to use the residue theorem for that
nevertheless):

(a)

� 2π

0

cos(θ) sin(2θ)

5 + 3 cos(2θ)
dθ.

(b)

� 2π

0

sin2(5θ
2
)

sin2( θ
2
)
dθ.

Hint: In order to avoid obtaining expressions of the form z
1
2 in the complex integral,

you might want to use some trigonometric identities to substitute sin2(w) with a formula
involving cos(2w).

(c) For 0 < p < 1:

� 2π

0

1

1− 2p cos(θ) + p2
dθ.

2. Use the residue theorem to compute the Fourier transform f̂(a) of the function

f(x) =
x

1 + x4
.

3. In this exercise, we will show that the Fourier transform of a Gaussian function is again a
Gaussian function. Let

f(x) = e−
x2

2 .

(a) Using an appropriate change of variables, show that

f̂(a) =
1√
2π

� +∞

−∞
e−iaxe−

x2

2 dx =
e−

a2

2

√
2π

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz,

where the �nal integral is considered over the line Im(z) = a in the complex plane.

(b) Show, using the techniques that we learned about moving the curve of integration in the
complex plane for integrals of holomorphic functions, that

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz =

� +∞

−∞
e−

x2

2 dx.

Hint: In the case a ⩾ 0 (the case a < 0 is completely analogous), you might want to apply
Cauchy's theorem to the rectangle which is the boundary of {−L ⩽ Re(z) ⩽ L} ∩ {0 ⩽
Im(z) ⩽ a}. What happens to the integral over the edges at Re(z) = ±L as L → +∞?
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(c) Use polar coordinates to compute the integral(� +∞

−∞
e−

x2

2 dx
)2

=

� +∞

−∞

� +∞

−∞
e−

x2+y2

2 dxdy.

(d) Combining the above calculations, show that

f̂(a) = f(a).

(e) Using the general properties of the Fourier transform, show that, for any σ ̸= 0,

F [e−
x2

2σ2 ](a) = |σ|e−
σ2a2

2 .

(4.) Let f : [0,+∞) → C be a piecewise continuous function.

(a) Suppose that there exists some γ0 ∈ R such that we have

� +∞

0

|f(t)|e−γ0t dt < +∞.

Show that, for any γ > γ0, we have for the function t · f(t):
� +∞

0

|t · f(t)|e−γt dt < +∞.

(Hint: Show that t ⩽ Ce(γ−γ0)t for some constant C > 0 independent of t.)

(b) Recall that a γ0 ∈ R is called an abscissa of convergence for the Laplace transform L[f ](z)
of f if, for every z ∈ C with Re(z) > γ0, the integral de�ning L[f ](z) is well-de�ned
(�converges absolutely�), that is to say:

� +∞

0

|f(t)||e−zt| dt < +∞.

Using the previous part of the exercise, show that, if γ0 is an abscissa of convergence
for L[f(t)], then γ0 is also an abscissa of convergence for L[t · f(t)] (and, therefore, by
repeating the same process, also for L[tnf(t)] for any n ∈ N).
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Solutions

1. (a) Let z = eiθ, θ ∈ [0, 2π], be the parametrization of the unit circle γ = {|z| = 1}, so that:

cos(θ) =
1

2

(
z +

1

z

)
, sin(2θ) =

1

2i

(
z2 − 1

z2

)
, cos(2θ) =

1

2

(
z2 +

1

z2

)
, dθ =

dz

iz

Then, the numerator becomes:

cos(θ) sin(2θ) =

(
1

2

(
z +

1

z

))(
1

2i

(
z2 − 1

z2

))
=

1

4i
(z3 + z − z−1 − z−3)

And the denominator:

5 + 3 cos(2θ) =
10 + 3z2 + 3z−2

2

So the integrand becomes:(
1

4i
· z

3 + z − z−1 − z−3

1
2
(10 + 3z2 + 3z−2)

)
· dz
iz

= −1

2
· z

3 + z − z−1 − z−3

z(10 + 3z2 + 3z−2)
dz

Now we evaluate:�
γ

z3 + z − z−1 − z−3

z(10 + 3z2 + 3z−2)
dz

.
=

�
γ

g(z)
dz

z
, g(z) =

z3 + z − z−1 − z−3

z(10 + 3z2 + 3z−2)
.

We could proceed by �nding the roots of the denominator inside the unit disc, evaluate
the residues etc, but there is a faster way: Note that the inversion z → w = 1

z
maps

the unit circle to the unit circle with the opposite parametrisation (since if z = eiθ, then
w = e−iθ), and we have

g(w) = g

(
1

z

)
= −g(z)

and
dz

z
= −dw

w
.

Therefore,

I =

�
γ

g(z)
dz

z
=

�
−γ

(−g(w))

(
−dw

w

)
= −I,

so I = 0.

(b) We begin by using the identity:

sin2 x =
1− cos(2x)

2
,

to write:
sin2

(
5θ
2

)
sin2

(
θ
2

) =
1− cos(5θ)

1− cos(θ)
.
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Now we change variables using z = eiθ, so that:

cos(nθ) =
1

2

(
zn + z−n

)
, dθ =

dz

iz
.

Thus, we have:

1− cos(5θ) = 1− 1

2
(z5 + z−5) =

2− z5 − z−5

2
,

1− cos(θ) =
2− z − z−1

2
.

So the integrand becomes:

1− cos(5θ)

1− cos(θ)
=

2− z5 − z−5

2− z − z−1
,

and the integral becomes: � 2π

0

2− z5 − z−5

2− z − z−1
· dz
iz

.

Multiply numerator and denominator by z5 to remove negative powers:

=
1

i

�
|z|=1

2z5 − z10 − 1

z(2z5 − z6 − z4)
dz.

Factor the denominator:

2z5 − z6 − z4 = z4(2z − z2 − 1) = −z4(z − 1)2.

So the integrand becomes:

f(z) =
2z5 − z10 − 1

−iz5(z − 1)2
.

At �rst glance, it might seem that we are integrating through the singularity at z = 1.
However, this is a regular point, since the numerator factorizes as 2z5−z10−1 = −(z5−1)2

so we have

f(z) =
2z5 − z10 − 1

−iz5(z − 1)2
=

(z5 − 1)2

iz5(z − 1)2
=

(
(z − 1)(z4 + z3 + z2 + z + 1)

)2
iz5(z − 1)2

=
(z4 + z3 + z2 + z + 1)2

iz5
.

We now compute the integral using the residue theorem:�
γ={|z|=1}

f(z) dz = 2πiResz=0 f.

Since f is expressed already in powers of z, we can immediately calculate the residue by
�nding the coe�cient of the z−1 term:

f(z) =
(z4 + z3 + z2 + z + 1)2

iz5
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=
z8 + z6 + z4 + z2 + 1 + 2z7 + 2z6 + 2z5 + 2z4 + 2z5 + 2z4 + 2z3 + 2z3 + 2z2 + 2z

iz5

= −i
(
z−5 + 2z−4 + 3z−3 + 4z−2 + 5z−1 + 4 + 3z + 2z2 + z3

)
,

so Resz=0 f = −5i and, thus, �
γ

f(z) dz = 10π.

(c) We use the substitution z = eiθ, which gives:

cos(θ) =
1

2

(
z +

1

z

)
, dθ =

dz

iz
.

The integrand becomes:

1

1− 2p cos(θ) + p2
=

1

1− p(z + z−1) + p2
.

Multiply numerator and denominator by z to eliminate negative powers:

1

1− p(z + z−1) + p2
· dz
iz

=
1

i
· dz

z(1− pz − p
z
+ p2)

.

=
1

i
· dz

−pz2 + (1 + p2)z − p
.

Let

f(z) =
1

−pz2 + (1 + p2)z − p
.

We now compute the contour integral:
�
|z|=1

f(z)

i
dz =

2πi

i
· Resz=z0f(z) = 2π · Resz=z0f(z),

where z0 is the pole inside the unit circle.

To �nd the poles, solve:
−pz2 + (1 + p2)z − p = 0.

Using the quadratic formula:

z =
1 + p2 ±

√
(1 + p2)2 − 4p2

2p
=

1 + p2 ± (1− p2)

2p
.

This gives two roots:

z1 =
1 + p2 + (1− p2)

2p
=

2

2p
=

1

p
, and z2 =

1 + p2 − (1− p2)

2p
=

2p2

2p
= p.

Since 0 < p < 1, we have:
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- z = p lies inside the unit circle,

- z = 1
p
lies outside the unit circle.

Thus, the only pole inside the unit circle is at z = p, and it is a simple pole. To compute
its residue, we use:

Resz=pf(z) = lim
z→p

(z − p)f(z).

Factor the denominator:

−pz2 + (1 + p2)z − p = −p(z − p)

(
z − 1

p

)
,

so:

f(z) =
1

−p(z − p)
(
z − 1

p

) .
Then:

(z − p)f(z) =
1

−p
(
z − 1

p

) , so lim
z→p

(z − p)f(z) =
1

−p
(
p− 1

p

) .
Simplify:

=
1

−p
(

p2−1
p

) =
1

−(p2 − 1)
=

1

1− p2
.

Thus, the integral is:

� 2π

0

1

1− 2p cos θ + p2
dθ = 2π · 1

1− p2
=

2π

1− p2
.

2. We want to compute the Fourier transform of the function

f(x) =
x

1 + x4
,

that is,

f̂(a) =
1√
2π

� ∞

−∞

x

1 + x4
e−iax dx, a ∈ R.

We consider the complex function

f(z) =
ze−iaz

1 + z4
.

The poles of f(z) are the solutions to 1 + z4 = 0 ⇒ z4 = −1, which are:

zk = ei
(2k+1)π

4 , k = 0, 1, 2, 3.
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These are explicitly:

z1 = eiπ/4, z2 = ei3π/4, z3 = ei5π/4, z4 = ei7π/4.

Upper half-plane poles: z1, z2
Lower half-plane poles: z3, z4

The poles are simple (since z4 + 1 = (z − z1)(z − z2)(z − z3)(z − z4). The residue at zk can be
computed via the formula Resz=zk(f) = limz→zk ((z − zk)f(z)). Alternatively, we can directly

use the formulas from Exercise 4 from Series 7, for functions of the form p(z)
q(z)

(which says that,

in the case when p(z0) ̸= 0 and z0 is a simple root of q(z), we have Resz=z0(f) =
p(z0)
q′(z0)

):

Resz=zk(f) =
zke

−iazk

d
dz
(1 + z4)

∣∣∣
z=zk

=
zke

−iazk

4z3k
=

e−iazk

4z2k
.

We close the contour in the complex plane according to the sign of a:

� If a ⩽ 0, then e−iaz decays in the upper half-plane (since, for z = x + iy, we have
|e−iaz| = |e−iax+ay| = eay, so |e−iaz| ⩽ 1 when a ⩽ 0 and y ⩾ 0). So we close the contour
in the upper half-plane, enclosing z1, z2, similarly to what we have already seen in class:
For R > 0 tending to ∞, we construct the closed loop which goes from −R to R on the
real axis and then follows the half circle of radius R on the upper hal-plane. Following
this process, as we have seen in the class, we get:� ∞

−∞

x

1 + x4
e−iax dx = 2πi (Resz=z1(f) + Resz=z2(f)) = 2πi

(
e−iaz1

4z21
+

e−iaz2

4z22

)
.

� If a > 0, then e−iaz decays in the lower half-plane. So we close the contour in the lower
half-plane, enclosing z3, z4.

Important remark. When closing the loop in the lower half plane, if we give our curve
a positive (i.e. counterclockwise) orientation, then the part of the curve on the real line is
parametrized from +R to −R (make a drawing to verify this). Thus, the original integral
(which corresponds to a parametrization going from−R to+R isminus the result obtained
from the positively oriented loop. This explains the − sign below (in comparison to what
we would naively expect from the residue theorem).

Thus, we get� ∞

−∞

x

1 + x4
e−iax dx = −2πi (Resz=z3(f) + Resz=z4(f)) = −2πi

(
e−iaz3

4z23
+

e−iaz4

4z24

)
.

f̂(a) =


√
2πi

(
e−iaz1

4z21
+

e−iaz2

4z22

)
, a ⩽ 0,

−
√
2πi

(
e−iaz3

4z23
+

e−iaz4

4z24

)
, a > 0,
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where
zk = ei

(2k+1)π
4 , k = 0, 1, 2, 3.

3. (a) We want to compute the Fourier transform of the Gaussian function

f(x) = e−
x2

2 ,

which is de�ned as

f̂(a) =
1√
2π

� +∞

−∞
e−iaxe−

x2

2 dx, a ∈ R.

We perform a change of variables by setting

z = x+ ia, so that x = z − ia, and dz = dx.

Thus, as x runs from −∞ to +∞, the variable z runs along the horizontal line Im(z) = a
in the complex plane. Now substitute:

x2 = (z − ia)2 = z2 − 2iaz − a2.

Hence,

e−
x2

2 = e−
1
2
(z2−2iaz−a2) = e−

z2

2 eiaze−
a2

2 .

Substituting into the Fourier transform expression:

f̂(a) =
1√
2π

� +∞

−∞
e−iaze−

z2

2 eiaze−
a2

2 dz.

Simplifying the exponentials:
e−iaz × eiaz = 1,

thus:

f̂(a) =
e−

a2

2

√
2π

� +∞+ia

−∞+ia

e−
z2

2 dz.

Introducing the limit as L → +∞, we can write:

f̂(a) =
e−

a2

2

√
2π

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz .

(b) We want to show that

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz =

� +∞

−∞
e−

x2

2 dx

by moving the contour of integration.

First of all, consider the rectangle in the complex plane with vertices at

−L, L, L+ ia, −L+ ia.

Let γ1, γ2, γ3, γ4 denote the four edges:
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* γ1: from −L to L along the real axis,

* γ2: from L to L+ ia vertically,

* γ3: from L+ ia to −L+ ia horizontally,

* γ4: from −L+ ia down to −L vertically.

Since e−
z2

2 is an entire function, by Cauchy's theorem, the integral over the boundary
vanishes: �

∂RL

e−
z2

2 dz = 0,

that is, �
γ1

e−
z2

2 dz +

�
γ2

e−
z2

2 dz +

�
γ3

e−
z2

2 dz +

�
γ4

e−
z2

2 dz = 0.

Thus: �
γ3

e−
z2

2 dz = −
(�

γ1

e−
z2

2 dz +

�
γ2

e−
z2

2 dz +

�
γ4

e−
z2

2 dz

)
.

- Along γ1, z = x ∈ R, so �
γ1

e−
z2

2 dz =

� L

−L

e−
x2

2 dx.

As L → +∞, we have:

lim
L→+∞

� L

−L

e−
x2

2 dx =

� +∞

−∞
e−

x2

2 dx.

- Along γ2 and γ4 (the vertical sides), parametrize:

γ2 : z = L+ iy, y ∈ [0, a],

γ4 : z = −L+ iy, y ∈ [a, 0].

The modulus of the integrand is (for z = x+ iy):∣∣∣e− z2

2

∣∣∣ = ∣∣∣e− 1
2
(x2+2xyi−y2)

∣∣∣ = ∣∣∣e− 1
2
(x2−y2)exyi

∣∣∣ = e−
1
2
(x2−y2)

where x = ±L.
Thus: ∣∣∣e− z2

2

∣∣∣ = e−
1
2
(L2−y2) ⩽ e−

1
2
(L2−a2) = e−

L2

2 e
a2

2 .

Therefore, the integrals over γ2 and γ4 satisfy:∣∣∣∣�
γ2

e−
z2

2 dz

∣∣∣∣ ⩽ ae−
L2

2 e
a2

2 ,

∣∣∣∣�
γ4

e−
z2

2 dz

∣∣∣∣ ⩽ ae−
L2

2 e
a2

2 .

Both go to zero exponentially fast as L → +∞.
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Thus, taking the limit L → +∞, the contributions of γ2 and γ4 vanish, and we obtain:

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz =

� +∞

−∞
e−

x2

2 dx,

as required.

(c) We change variables to polar coordinates:

x = r cos θ, y = r sin θ,

so that
x2 + y2 = r2, and dx dy = r dr dθ.

Thus, the double integral becomes

� +∞

−∞

� +∞

−∞
e−

x2+y2

2 dx dy =

� 2π

0

� +∞

0

e−
r2

2 r dr dθ.

First, we compute the integral over r:

� +∞

0

re−
r2

2 dr.

Make the substitution

u =
r2

2
, so that du = r dr.

Thus, � +∞

0

re−
r2

2 dr =

� +∞

0

e−u du =
[
−e−u

]+∞
0

= 1.

Next, we compute the integral over θ:

� 2π

0

dθ = 2π.

Multiplying the two results, we �nd(� +∞

−∞
e−

x2

2 dx

)2

= 2π.

Thus, taking the square root of both sides,

� +∞

−∞
e−

x2

2 dx =
√
2π .
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(d) From part (a), we have

f̂(a) =
e−

a2

2

√
2π

× lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz.

Using the results from parts (b) and (c),

lim
L→+∞

� L+ia

−L+ia

e−
z2

2 dz =
√
2π,

we substitute and simplify:

f̂(a) =
e−

a2

2

√
2π

×
√
2π = e−

a2

2 .

Since

f(a) = e−
a2

2 ,

we conclude that

f̂(a) = f(a) .

(e) We need to compute the Fourier transform of the function

g(x) = e−
x2

2σ2 for σ ̸= 0.

Notice that
g(x) = f

(x
σ

)
,

where

f(x) = e−
x2

2 .

Thus, g(x) is a scaled version of f(x). Recall the general scaling property of the Fourier
transform:

F [f(λx)](a) =
1

|λ|
f̂
(a
λ

)
,

for any λ ̸= 0.

Here, λ = 1
σ
, so

F [g](a) = |σ| F [f ](σa).

From previous parts, we know that

F [f ](a) = e−
a2

2 .

Thus,

F [f ](σa) = e−
(σa)2

2 = e−
σ2a2

2 .
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Substituting back, we �nd:

F [g](a) = |σ|e−
σ2a2

2 .

Thus, we have shown:

F
(
e−

x2

2σ2

)
(a) = |σ|e−

σ2a2

2 .

4. (a) We are given a piecewise continuous function f : [0,+∞) → C such that there exists
γ0 ∈ R with � +∞

0

|f(t)|e−γ0t dt < +∞.

We need to show that, for any γ > γ0,

� +∞

0

|tf(t)|e−γt dt < +∞.

Since γ > γ0, the quantity γ − γ0 > 0.

We claim that there exists a constant C > 0 such that for all t ⩾ 0,

t ⩽ Ce(γ−γ0)t.

Proof of the claim: Consider the function

g(t) =
t

e(γ−γ0)t
.

Observe that:

- g(0) = 0,

- As t → +∞, g(t) → 0 as can be veri�ed easily using e.g. L'Hopital's rule (in general
the exponential grows faster than any polynomial),

- g is continuous on [0,+∞),

- Therefore, g(t) achieves a maximum value M ⩾ 0 on [0,+∞).

Thus, for all t ⩾ 0,
g(t) ⩽ M,

that is,
t ⩽ Me(γ−γ0)t.

Setting C = M completes the proof of the claim.

Using the estimate t ⩽ Ce(γ−γ0)t, we have

|tf(t)|e−γt = |f(t)|te−γt ⩽ C|f(t)|e−(γ0)t.
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Thus, � +∞

0

|tf(t)|e−γt dt ⩽ C

� +∞

0

|f(t)|e−γ0t dt.

By assumption, the right-hand side is �nite:

� +∞

0

|f(t)|e−γ0t dt < +∞.

Therefore, � +∞

0

|tf(t)|e−γt dt < +∞

for any γ > γ0.

(c) Suppose that γ0 ∈ R is an abscissa of convergence for the Laplace transform L[f ](z), that
is, for every z ∈ C with Re(z) > γ0,

� +∞

0

|f(t)||e−zt| dt =
� +∞

0

|f(t)|e−Re(z)t dt < +∞.

For any γ1 > γ0, choosing a z with Re(z) = γ1, the above implies that

� +∞

0

|f(t)|e−γ1t dt < +∞ for any γ1 > γ0. (1)

We need to show that γ0 is also an abscissa of convergence for L[t · f(t)](z), that is,
� +∞

0

|tf(t)|e−Re(z)t dt < +∞ for all Re(z) > γ0.

For any z ∈ C with Re(z) = γ > γ0, let us choose some γ1 ∈ (γ0, γ). From part (a), we
know that if � +∞

0

|f(t)|e−γ1t dt < +∞,

then for any γ > γ1, � +∞

0

|tf(t)|e−γt dt < +∞.

Thus, since Re(z) = γ and the �rst inequality is true in view of (1), we deduce the requied
estimate � +∞

0

|tf(t)|e−Re(z)t dt < +∞.

Thus, the Laplace transform L[tf(t)](z) converges absolutely for all Re(z) > γ0.

By applying the same reasoning iteratively, we conclude that if γ0 is an abscissa of con-
vergence for L[f ](z), then it is also an abscissa for L[tnf(t)](z) for all n ∈ N
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