

**1.** Calculate the following real integrals (you might want to use the residue theorem for that nevertheless):

(a)  $\int_0^{2\pi} \frac{\cos(\theta) \sin(2\theta)}{5 + 3 \cos(2\theta)} d\theta.$

(b)  $\int_0^{2\pi} \frac{\sin^2(\frac{5\theta}{2})}{\sin^2(\frac{\theta}{2})} d\theta.$

*Hint: In order to avoid obtaining expressions of the form  $z^{\frac{1}{2}}$  in the complex integral, you might want to use some trigonometric identities to substitute  $\sin^2(w)$  with a formula involving  $\cos(2w)$ .*

(c) For  $0 < p < 1$ :  $\int_0^{2\pi} \frac{1}{1 - 2p \cos(\theta) + p^2} d\theta.$

**2.** Use the residue theorem to compute the Fourier transform  $\hat{f}(a)$  of the function

$$f(x) = \frac{x}{1 + x^4}.$$

**3.** In this exercise, we will show that the Fourier transform of a Gaussian function is again a Gaussian function. Let

$$f(x) = e^{-\frac{x^2}{2}}.$$

(a) Using an appropriate change of variables, show that

$$\hat{f}(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iax} e^{-\frac{x^2}{2}} dx = \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}} \lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz,$$

where the final integral is considered over the line  $\text{Im}(z) = a$  in the complex plane.

(b) Show, using the techniques that we learned about moving the curve of integration in the complex plane for integrals of holomorphic functions, that

$$\lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx.$$

*Hint: In the case  $a \geq 0$  (the case  $a < 0$  is completely analogous), you might want to apply Cauchy's theorem to the rectangle which is the boundary of  $\{-L \leq \text{Re}(z) \leq L\} \cap \{0 \leq \text{Im}(z) \leq a\}$ . What happens to the integral over the edges at  $\text{Re}(z) = \pm L$  as  $L \rightarrow +\infty$ ?*

(c) Use polar coordinates to compute the integral

$$\left( \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx \right)^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{2}} dx dy.$$

(d) Combining the above calculations, show that

$$\hat{f}(a) = f(a).$$

(e) Using the general properties of the Fourier transform, show that, for any  $\sigma \neq 0$ ,

$$\mathcal{F}[e^{-\frac{x^2}{2\sigma^2}}](a) = |\sigma| e^{-\frac{\sigma^2 a^2}{2}}.$$

(4.) Let  $f : [0, +\infty) \rightarrow \mathbb{C}$  be a piecewise continuous function.

(a) Suppose that there exists some  $\gamma_0 \in \mathbb{R}$  such that we have

$$\int_0^{+\infty} |f(t)| e^{-\gamma_0 t} dt < +\infty.$$

Show that, for any  $\gamma > \gamma_0$ , we have for the function  $t \cdot f(t)$ :

$$\int_0^{+\infty} |t \cdot f(t)| e^{-\gamma t} dt < +\infty.$$

(Hint: Show that  $t \leq C e^{(\gamma-\gamma_0)t}$  for some constant  $C > 0$  independent of  $t$ .)

(b) Recall that a  $\gamma_0 \in \mathbb{R}$  is called an *abscissa of convergence* for the Laplace transform  $\mathcal{L}[f](z)$  of  $f$  if, for every  $z \in \mathbb{C}$  with  $\operatorname{Re}(z) > \gamma_0$ , the integral defining  $\mathcal{L}[f](z)$  is well-defined (“converges absolutely”), that is to say:

$$\int_0^{+\infty} |f(t)| |e^{-zt}| dt < +\infty.$$

Using the previous part of the exercise, show that, if  $\gamma_0$  is an abscissa of convergence for  $\mathcal{L}[f(t)]$ , then  $\gamma_0$  is also an abscissa of convergence for  $\mathcal{L}[t \cdot f(t)]$  (and, therefore, by repeating the same process, also for  $\mathcal{L}[t^n f(t)]$  for any  $n \in \mathbb{N}$ ).

## Solutions

1. (a) Let  $z = e^{i\theta}$ ,  $\theta \in [0, 2\pi]$ , be the parametrization of the unit circle  $\gamma = \{|z| = 1\}$ , so that:

$$\cos(\theta) = \frac{1}{2} \left( z + \frac{1}{z} \right), \quad \sin(2\theta) = \frac{1}{2i} \left( z^2 - \frac{1}{z^2} \right), \quad \cos(2\theta) = \frac{1}{2} \left( z^2 + \frac{1}{z^2} \right), \quad d\theta = \frac{dz}{iz}$$

Then, the numerator becomes:

$$\cos(\theta) \sin(2\theta) = \left( \frac{1}{2} \left( z + \frac{1}{z} \right) \right) \left( \frac{1}{2i} \left( z^2 - \frac{1}{z^2} \right) \right) = \frac{1}{4i} (z^3 + z - z^{-1} - z^{-3})$$

And the denominator:

$$5 + 3 \cos(2\theta) = \frac{10 + 3z^2 + 3z^{-2}}{2}$$

So the integrand becomes:

$$\left( \frac{1}{4i} \cdot \frac{z^3 + z - z^{-1} - z^{-3}}{\frac{1}{2}(10 + 3z^2 + 3z^{-2})} \right) \cdot \frac{dz}{iz} = -\frac{1}{2} \cdot \frac{z^3 + z - z^{-1} - z^{-3}}{z(10 + 3z^2 + 3z^{-2})} dz$$

Now we evaluate:

$$\int_{\gamma} \frac{z^3 + z - z^{-1} - z^{-3}}{z(10 + 3z^2 + 3z^{-2})} dz \doteq \int_{\gamma} g(z) \frac{dz}{z}, \quad g(z) = \frac{z^3 + z - z^{-1} - z^{-3}}{z(10 + 3z^2 + 3z^{-2})}.$$

We could proceed by finding the roots of the denominator inside the unit disc, evaluate the residues etc, but there is a faster way: Note that the inversion  $z \rightarrow w = \frac{1}{z}$  maps the unit circle to the unit circle with the *opposite parametrisation* (since if  $z = e^{i\theta}$ , then  $w = e^{-i\theta}$ ), and we have

$$g(w) = g\left(\frac{1}{z}\right) = -g(z)$$

and

$$\frac{dz}{z} = -\frac{dw}{w}.$$

Therefore,

$$I = \int_{\gamma} g(z) \frac{dz}{z} = \int_{-\gamma} (-g(w)) \left( -\frac{dw}{w} \right) = -I,$$

so  $I = 0$ .

(b) We begin by using the identity:

$$\sin^2 x = \frac{1 - \cos(2x)}{2},$$

to write:

$$\frac{\sin^2\left(\frac{5\theta}{2}\right)}{\sin^2\left(\frac{\theta}{2}\right)} = \frac{1 - \cos(5\theta)}{1 - \cos(\theta)}.$$

Now we change variables using  $z = e^{i\theta}$ , so that:

$$\cos(n\theta) = \frac{1}{2} (z^n + z^{-n}), \quad d\theta = \frac{dz}{iz}.$$

Thus, we have:

$$\begin{aligned} 1 - \cos(5\theta) &= 1 - \frac{1}{2}(z^5 + z^{-5}) = \frac{2 - z^5 - z^{-5}}{2}, \\ 1 - \cos(\theta) &= \frac{2 - z - z^{-1}}{2}. \end{aligned}$$

So the integrand becomes:

$$\frac{1 - \cos(5\theta)}{1 - \cos(\theta)} = \frac{2 - z^5 - z^{-5}}{2 - z - z^{-1}},$$

and the integral becomes:

$$\int_0^{2\pi} \frac{2 - z^5 - z^{-5}}{2 - z - z^{-1}} \cdot \frac{dz}{iz}.$$

Multiply numerator and denominator by  $z^5$  to remove negative powers:

$$= \frac{1}{i} \oint_{|z|=1} \frac{2z^5 - z^{10} - 1}{z(2z^5 - z^6 - z^4)} dz.$$

Factor the denominator:

$$2z^5 - z^6 - z^4 = z^4(2z - z^2 - 1) = -z^4(z - 1)^2.$$

So the integrand becomes:

$$f(z) = \frac{2z^5 - z^{10} - 1}{-iz^5(z - 1)^2}.$$

At first glance, it might seem that we are integrating through the singularity at  $z = 1$ . However, this is a regular point, since the numerator factorizes as  $2z^5 - z^{10} - 1 = -(z^5 - 1)^2$  so we have

$$f(z) = \frac{2z^5 - z^{10} - 1}{-iz^5(z - 1)^2} = \frac{(z^5 - 1)^2}{iz^5(z - 1)^2} = \frac{((z - 1)(z^4 + z^3 + z^2 + z + 1))^2}{iz^5(z - 1)^2} = \frac{(z^4 + z^3 + z^2 + z + 1)^2}{iz^5}.$$

We now compute the integral using the residue theorem:

$$\int_{\gamma=\{|z|=1\}} f(z) dz = 2\pi i \operatorname{Res}_{z=0} f.$$

Since  $f$  is expressed already in powers of  $z$ , we can immediately calculate the residue by finding the coefficient of the  $z^{-1}$  term:

$$f(z) = \frac{(z^4 + z^3 + z^2 + z + 1)^2}{iz^5}$$

$$\begin{aligned}
&= \frac{z^8 + z^6 + z^4 + z^2 + 1 + 2z^7 + 2z^6 + 2z^5 + 2z^4 + 2z^5 + 2z^4 + 2z^3 + 2z^3 + 2z^2 + 2z}{iz^5} \\
&= -i(z^{-5} + 2z^{-4} + 3z^{-3} + 4z^{-2} + 5z^{-1} + 4 + 3z + 2z^2 + z^3),
\end{aligned}$$

so  $\text{Res}_{z=0} f = -5i$  and, thus,

$$\int_{\gamma} f(z) dz = 10\pi.$$

(c) We use the substitution  $z = e^{i\theta}$ , which gives:

$$\cos(\theta) = \frac{1}{2} \left( z + \frac{1}{z} \right), \quad d\theta = \frac{dz}{iz}.$$

The integrand becomes:

$$\frac{1}{1 - 2p\cos(\theta) + p^2} = \frac{1}{1 - p(z + z^{-1}) + p^2}.$$

Multiply numerator and denominator by  $z$  to eliminate negative powers:

$$\begin{aligned}
&\frac{1}{1 - p(z + z^{-1}) + p^2} \cdot \frac{dz}{iz} = \frac{1}{i} \cdot \frac{dz}{z(1 - pz - \frac{p}{z} + p^2)} \\
&= \frac{1}{i} \cdot \frac{dz}{-pz^2 + (1 + p^2)z - p}.
\end{aligned}$$

Let

$$f(z) = \frac{1}{-pz^2 + (1 + p^2)z - p}.$$

We now compute the contour integral:

$$\oint_{|z|=1} \frac{f(z)}{i} dz = \frac{2\pi i}{i} \cdot \text{Res}_{z=z_0} f(z) = 2\pi \cdot \text{Res}_{z=z_0} f(z),$$

where  $z_0$  is the pole *inside* the unit circle.

To find the poles, solve:

$$-pz^2 + (1 + p^2)z - p = 0.$$

Using the quadratic formula:

$$z = \frac{1 + p^2 \pm \sqrt{(1 + p^2)^2 - 4p^2}}{2p} = \frac{1 + p^2 \pm (1 - p^2)}{2p}.$$

This gives two roots:

$$z_1 = \frac{1 + p^2 + (1 - p^2)}{2p} = \frac{2}{2p} = \frac{1}{p}, \quad \text{and} \quad z_2 = \frac{1 + p^2 - (1 - p^2)}{2p} = \frac{2p^2}{2p} = p.$$

Since  $0 < p < 1$ , we have:

- $z = p$  lies **inside** the unit circle,
- $z = \frac{1}{p}$  lies **outside** the unit circle.

Thus, the only pole inside the unit circle is at  $z = p$ , and it is a **simple pole**. To compute its residue, we use:

$$\text{Res}_{z=p} f(z) = \lim_{z \rightarrow p} (z - p) f(z).$$

Factor the denominator:

$$-pz^2 + (1 + p^2)z - p = -p(z - p) \left( z - \frac{1}{p} \right),$$

so:

$$f(z) = \frac{1}{-p(z - p) \left( z - \frac{1}{p} \right)}.$$

Then:

$$(z - p)f(z) = \frac{1}{-p \left( z - \frac{1}{p} \right)}, \quad \text{so} \quad \lim_{z \rightarrow p} (z - p)f(z) = \frac{1}{-p \left( p - \frac{1}{p} \right)}.$$

Simplify:

$$= \frac{1}{-p \left( \frac{p^2 - 1}{p} \right)} = \frac{1}{-(p^2 - 1)} = \frac{1}{1 - p^2}.$$

Thus, the integral is:

$$\int_0^{2\pi} \frac{1}{1 - 2p \cos \theta + p^2} d\theta = 2\pi \cdot \frac{1}{1 - p^2} = \boxed{\frac{2\pi}{1 - p^2}}.$$

2. We want to compute the Fourier transform of the function

$$f(x) = \frac{x}{1 + x^4},$$

that is,

$$\hat{f}(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{x}{1 + x^4} e^{-i a x} dx, \quad a \in \mathbb{R}.$$

We consider the complex function

$$f(z) = \frac{ze^{-iaz}}{1 + z^4}.$$

The poles of  $f(z)$  are the solutions to  $1 + z^4 = 0 \Rightarrow z^4 = -1$ , which are:

$$z_k = e^{i \frac{(2k+1)\pi}{4}}, \quad k = 0, 1, 2, 3.$$

These are explicitly:

$$z_1 = e^{i\pi/4}, \quad z_2 = e^{i3\pi/4}, \quad z_3 = e^{i5\pi/4}, \quad z_4 = e^{i7\pi/4}.$$

**Upper half-plane poles:**  $z_1, z_2$

**Lower half-plane poles:**  $z_3, z_4$

The poles are simple (since  $z^4 + 1 = (z - z_1)(z - z_2)(z - z_3)(z - z_4)$ ). The residue at  $z_k$  can be computed via the formula  $\text{Res}_{z=z_k}(f) = \lim_{z \rightarrow z_k} ((z - z_k)f(z))$ . Alternatively, we can directly use the formulas from Exercise 4 from Series 7, for functions of the form  $\frac{p(z)}{q(z)}$  (which says that, in the case when  $p(z_0) \neq 0$  and  $z_0$  is a simple root of  $q(z)$ , we have  $\text{Res}_{z=z_0}(f) = \frac{p(z_0)}{q'(z_0)}$ ):

$$\text{Res}_{z=z_k}(f) = \frac{z_k e^{-iaz_k}}{\frac{d}{dz}(1+z^4)\Big|_{z=z_k}} = \frac{z_k e^{-iaz_k}}{4z_k^3} = \frac{e^{-iaz_k}}{4z_k^2}.$$

We close the contour in the complex plane according to the sign of  $a$ :

- If  $a \leq 0$ , then  $e^{-iaz}$  decays in the **upper half-plane** (since, for  $z = x + iy$ , we have  $|e^{-iaz}| = |e^{-iax+ay}| = e^{ay}$ , so  $|e^{-iaz}| \leq 1$  when  $a \leq 0$  and  $y \geq 0$ ). So we close the contour in the upper half-plane, enclosing  $z_1, z_2$ , similarly to what we have already seen in class: For  $R > 0$  tending to  $\infty$ , we construct the closed loop which goes from  $-R$  to  $R$  on the real axis and then follows the half circle of radius  $R$  on the upper half-plane. Following this process, as we have seen in the class, we get:

$$\int_{-\infty}^{\infty} \frac{x}{1+x^4} e^{-iax} dx = 2\pi i (\text{Res}_{z=z_1}(f) + \text{Res}_{z=z_2}(f)) = 2\pi i \left( \frac{e^{-iaz_1}}{4z_1^2} + \frac{e^{-iaz_2}}{4z_2^2} \right).$$

- If  $a > 0$ , then  $e^{-iaz}$  decays in the **lower half-plane**. So we close the contour in the lower half-plane, enclosing  $z_3, z_4$ .

**Important remark.** When closing the loop in the lower half plane, if we give our curve a positive (i.e. counterclockwise) orientation, then the part of the curve on the real line is parametrized from  $+R$  to  $-R$  (make a drawing to verify this). Thus, the original integral (which corresponds to a parametrization going from  $-R$  to  $+R$ ) is *minus* the result obtained from the positively oriented loop. This explains the  $-$  sign below (in comparison to what we would naively expect from the residue theorem).

Thus, we get

$$\int_{-\infty}^{\infty} \frac{x}{1+x^4} e^{-iax} dx = -2\pi i (\text{Res}_{z=z_3}(f) + \text{Res}_{z=z_4}(f)) = -2\pi i \left( \frac{e^{-iaz_3}}{4z_3^2} + \frac{e^{-iaz_4}}{4z_4^2} \right).$$

$$\hat{f}(a) = \begin{cases} \sqrt{2\pi}i \left( \frac{e^{-iaz_1}}{4z_1^2} + \frac{e^{-iaz_2}}{4z_2^2} \right), & a \leq 0, \\ -\sqrt{2\pi}i \left( \frac{e^{-iaz_3}}{4z_3^2} + \frac{e^{-iaz_4}}{4z_4^2} \right), & a > 0, \end{cases}$$

where

$$z_k = e^{i\frac{(2k+1)\pi}{4}}, \quad k = 0, 1, 2, 3.$$

**3. (a)** We want to compute the Fourier transform of the Gaussian function

$$f(x) = e^{-\frac{x^2}{2}},$$

which is defined as

$$\hat{f}(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iax} e^{-\frac{x^2}{2}} dx, \quad a \in \mathbb{R}.$$

We perform a change of variables by setting

$$z = x + ia, \quad \text{so that} \quad x = z - ia, \quad \text{and} \quad dz = dx.$$

Thus, as  $x$  runs from  $-\infty$  to  $+\infty$ , the variable  $z$  runs along the horizontal line  $\text{Im}(z) = a$  in the complex plane. Now substitute:

$$x^2 = (z - ia)^2 = z^2 - 2iaz - a^2.$$

Hence,

$$e^{-\frac{x^2}{2}} = e^{-\frac{1}{2}(z^2 - 2iaz - a^2)} = e^{-\frac{z^2}{2}} e^{iaz} e^{-\frac{a^2}{2}}.$$

Substituting into the Fourier transform expression:

$$\hat{f}(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iaz} e^{-\frac{z^2}{2}} e^{iaz} e^{-\frac{a^2}{2}} dz.$$

Simplifying the exponentials:

$$e^{-iaz} \times e^{iaz} = 1,$$

thus:

$$\hat{f}(a) = \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}} \int_{-\infty+ia}^{+\infty+ia} e^{-\frac{z^2}{2}} dz.$$

Introducing the limit as  $L \rightarrow +\infty$ , we can write:

$$\hat{f}(a) = \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}} \lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz.$$

**(b)** We want to show that

$$\lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx$$

by moving the contour of integration.

First of all, consider the rectangle in the complex plane with vertices at

$$-L, \quad L, \quad L + ia, \quad -L + ia.$$

Let  $\gamma_1, \gamma_2, \gamma_3, \gamma_4$  denote the four edges:

- \*  $\gamma_1$ : from  $-L$  to  $L$  along the real axis,
- \*  $\gamma_2$ : from  $L$  to  $L + ia$  vertically,
- \*  $\gamma_3$ : from  $L + ia$  to  $-L + ia$  horizontally,
- \*  $\gamma_4$ : from  $-L + ia$  down to  $-L$  vertically.

Since  $e^{-\frac{z^2}{2}}$  is an entire function, by Cauchy's theorem, the integral over the boundary vanishes:

$$\int_{\partial R_L} e^{-\frac{z^2}{2}} dz = 0,$$

that is,

$$\int_{\gamma_1} e^{-\frac{z^2}{2}} dz + \int_{\gamma_2} e^{-\frac{z^2}{2}} dz + \int_{\gamma_3} e^{-\frac{z^2}{2}} dz + \int_{\gamma_4} e^{-\frac{z^2}{2}} dz = 0.$$

Thus:

$$\int_{\gamma_3} e^{-\frac{z^2}{2}} dz = - \left( \int_{\gamma_1} e^{-\frac{z^2}{2}} dz + \int_{\gamma_2} e^{-\frac{z^2}{2}} dz + \int_{\gamma_4} e^{-\frac{z^2}{2}} dz \right).$$

- Along  $\gamma_1$ ,  $z = x \in \mathbb{R}$ , so

$$\int_{\gamma_1} e^{-\frac{z^2}{2}} dz = \int_{-L}^L e^{-\frac{x^2}{2}} dx.$$

As  $L \rightarrow +\infty$ , we have:

$$\lim_{L \rightarrow +\infty} \int_{-L}^L e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx.$$

- Along  $\gamma_2$  and  $\gamma_4$  (the vertical sides), parametrize:

$$\gamma_2 : z = L + iy, \quad y \in [0, a],$$

$$\gamma_4 : z = -L + iy, \quad y \in [a, 0].$$

The modulus of the integrand is (for  $z = x + iy$ ):

$$\left| e^{-\frac{z^2}{2}} \right| = \left| e^{-\frac{1}{2}(x^2 + 2xyi - y^2)} \right| = \left| e^{-\frac{1}{2}(x^2 - y^2)} e^{xyi} \right| = e^{-\frac{1}{2}(x^2 - y^2)}$$

where  $x = \pm L$ .

Thus:

$$\left| e^{-\frac{z^2}{2}} \right| = e^{-\frac{1}{2}(L^2 - y^2)} \leq e^{-\frac{1}{2}(L^2 - a^2)} = e^{-\frac{L^2}{2}} e^{\frac{a^2}{2}}.$$

Therefore, the integrals over  $\gamma_2$  and  $\gamma_4$  satisfy:

$$\left| \int_{\gamma_2} e^{-\frac{z^2}{2}} dz \right| \leq ae^{-\frac{L^2}{2}} e^{\frac{a^2}{2}},$$

$$\left| \int_{\gamma_4} e^{-\frac{z^2}{2}} dz \right| \leq ae^{-\frac{L^2}{2}} e^{\frac{a^2}{2}}.$$

Both go to zero exponentially fast as  $L \rightarrow +\infty$ .

Thus, taking the limit  $L \rightarrow +\infty$ , the contributions of  $\gamma_2$  and  $\gamma_4$  vanish, and we obtain:

$$\lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx,$$

as required.

**(c)** We change variables to polar coordinates:

$$x = r \cos \theta, \quad y = r \sin \theta,$$

so that

$$x^2 + y^2 = r^2, \quad \text{and} \quad dx dy = r dr d\theta.$$

Thus, the double integral becomes

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{2}} dx dy = \int_0^{2\pi} \int_0^{+\infty} e^{-\frac{r^2}{2}} r dr d\theta.$$

First, we compute the integral over  $r$ :

$$\int_0^{+\infty} r e^{-\frac{r^2}{2}} dr.$$

Make the substitution

$$u = \frac{r^2}{2}, \quad \text{so that} \quad du = r dr.$$

Thus,

$$\int_0^{+\infty} r e^{-\frac{r^2}{2}} dr = \int_0^{+\infty} e^{-u} du = [-e^{-u}]_0^{+\infty} = 1.$$

Next, we compute the integral over  $\theta$ :

$$\int_0^{2\pi} d\theta = 2\pi.$$

Multiplying the two results, we find

$$\left( \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx \right)^2 = 2\pi.$$

Thus, taking the square root of both sides,

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}.$$

**(d)** From part (a), we have

$$\hat{f}(a) = \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}} \times \lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz.$$

Using the results from parts (b) and (c),

$$\lim_{L \rightarrow +\infty} \int_{-L+ia}^{L+ia} e^{-\frac{z^2}{2}} dz = \sqrt{2\pi},$$

we substitute and simplify:

$$\hat{f}(a) = \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}} \times \sqrt{2\pi} = e^{-\frac{a^2}{2}}.$$

Since

$$f(a) = e^{-\frac{a^2}{2}},$$

we conclude that

$$\boxed{\hat{f}(a) = f(a)}.$$

**(e)** We need to compute the Fourier transform of the function

$$g(x) = e^{-\frac{x^2}{2\sigma^2}} \quad \text{for } \sigma \neq 0.$$

Notice that

$$g(x) = f\left(\frac{x}{\sigma}\right),$$

where

$$f(x) = e^{-\frac{x^2}{2}}.$$

Thus,  $g(x)$  is a scaled version of  $f(x)$ . Recall the general scaling property of the Fourier transform:

$$\mathcal{F}[f(\lambda x)](a) = \frac{1}{|\lambda|} \hat{f}\left(\frac{a}{\lambda}\right),$$

for any  $\lambda \neq 0$ .

Here,  $\lambda = \frac{1}{\sigma}$ , so

$$\mathcal{F}[g](a) = |\sigma| \mathcal{F}[f](\sigma a).$$

From previous parts, we know that

$$\mathcal{F}[f](a) = e^{-\frac{a^2}{2}}.$$

Thus,

$$\mathcal{F}[f](\sigma a) = e^{-\frac{(\sigma a)^2}{2}} = e^{-\frac{\sigma^2 a^2}{2}}.$$

Substituting back, we find:

$$\mathcal{F}[g](a) = |\sigma| e^{-\frac{\sigma^2 a^2}{2}}.$$

Thus, we have shown:

$$\boxed{\mathcal{F}\left(e^{-\frac{x^2}{2\sigma^2}}\right)(a) = |\sigma| e^{-\frac{\sigma^2 a^2}{2}}}.$$

4. (a) We are given a piecewise continuous function  $f : [0, +\infty) \rightarrow \mathbb{C}$  such that there exists  $\gamma_0 \in \mathbb{R}$  with

$$\int_0^{+\infty} |f(t)| e^{-\gamma_0 t} dt < +\infty.$$

We need to show that, for any  $\gamma > \gamma_0$ ,

$$\int_0^{+\infty} |tf(t)| e^{-\gamma t} dt < +\infty.$$

Since  $\gamma > \gamma_0$ , the quantity  $\gamma - \gamma_0 > 0$ .

We claim that there exists a constant  $C > 0$  such that for all  $t \geq 0$ ,

$$t \leq C e^{(\gamma - \gamma_0)t}.$$

*Proof of the claim:* Consider the function

$$g(t) = \frac{t}{e^{(\gamma - \gamma_0)t}}.$$

Observe that:

- $g(0) = 0$ ,
- As  $t \rightarrow +\infty$ ,  $g(t) \rightarrow 0$  as can be verified easily using e.g. L'Hopital's rule (in general the exponential grows faster than any polynomial),
- $g$  is continuous on  $[0, +\infty)$ ,
- Therefore,  $g(t)$  achieves a maximum value  $M \geq 0$  on  $[0, +\infty)$ .

Thus, for all  $t \geq 0$ ,

$$g(t) \leq M,$$

that is,

$$t \leq M e^{(\gamma - \gamma_0)t}.$$

Setting  $C = M$  completes the proof of the claim.

Using the estimate  $t \leq C e^{(\gamma - \gamma_0)t}$ , we have

$$|tf(t)| e^{-\gamma t} = |f(t)| t e^{-\gamma t} \leq C |f(t)| e^{-(\gamma_0)t}.$$

Thus,

$$\int_0^{+\infty} |tf(t)|e^{-\gamma t} dt \leq C \int_0^{+\infty} |f(t)|e^{-\gamma_0 t} dt.$$

By assumption, the right-hand side is finite:

$$\int_0^{+\infty} |f(t)|e^{-\gamma_0 t} dt < +\infty.$$

Therefore,

$$\boxed{\int_0^{+\infty} |tf(t)|e^{-\gamma t} dt < +\infty}$$

for any  $\gamma > \gamma_0$ .

(c) Suppose that  $\gamma_0 \in \mathbb{R}$  is an abscissa of convergence for the Laplace transform  $\mathcal{L}[f](z)$ , that is, for every  $z \in \mathbb{C}$  with  $\operatorname{Re}(z) > \gamma_0$ ,

$$\int_0^{+\infty} |f(t)| |e^{-zt}| dt = \int_0^{+\infty} |f(t)| e^{-\operatorname{Re}(z)t} dt < +\infty.$$

For any  $\gamma_1 > \gamma_0$ , choosing a  $z$  with  $\operatorname{Re}(z) = \gamma_1$ , the above implies that

$$\int_0^{+\infty} |f(t)| e^{-\gamma_1 t} dt < +\infty \quad \text{for any } \gamma_1 > \gamma_0. \quad (1)$$

We need to show that  $\gamma_0$  is also an abscissa of convergence for  $\mathcal{L}[t \cdot f(t)](z)$ , that is,

$$\int_0^{+\infty} |tf(t)| e^{-\operatorname{Re}(z)t} dt < +\infty \quad \text{for all } \operatorname{Re}(z) > \gamma_0.$$

For any  $z \in \mathbb{C}$  with  $\operatorname{Re}(z) = \gamma > \gamma_0$ , let us choose some  $\gamma_1 \in (\gamma_0, \gamma)$ . From part (a), we know that if

$$\int_0^{+\infty} |f(t)| e^{-\gamma_1 t} dt < +\infty,$$

then for any  $\gamma > \gamma_1$ ,

$$\int_0^{+\infty} |tf(t)| e^{-\gamma t} dt < +\infty.$$

Thus, since  $\operatorname{Re}(z) = \gamma$  and the first inequality is true in view of (1), we deduce the required estimate

$$\int_0^{+\infty} |tf(t)| e^{-\operatorname{Re}(z)t} dt < +\infty.$$

Thus, the Laplace transform  $\mathcal{L}[tf(t)](z)$  converges absolutely for all  $\operatorname{Re}(z) > \gamma_0$ .

By applying the same reasoning iteratively, we conclude that if  $\gamma_0$  is an abscissa of convergence for  $\mathcal{L}[f](z)$ , then it is also an abscissa for  $\mathcal{L}[t^n f(t)](z)$  for all  $n \in \mathbb{N}$