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1. Calculate the following real integrals (you might want to use the residue theorem for that

nevertheless):
2™ cos() sin( cos(#) sin(26)
(a) / 5+3COS 5+ 3cos(20) 0.

2m
sin?
o |
sin?
Hint: In order to avoid obtaining expressions of the form 22 in the complex integral,

you might want to use some trigonometric identities to substitute sin®(w) with a formula
involving cos(2w).

1

2w
I 1: do.
(c) For0<p< /0 1= 3pcos(d) + 2

2. Use the residue theorem to compute the Fourier transform f(a) of the function

3. In this exercise, we will show that the Fourier transform of a Gaussian function is again a

Gaussian function. Let ,

x

flz)=e"7.
(a) Using an appropriate change of variables, show that

2
a .
—% L+ia 9

¢ e —iaz —2 € : -z
fla) = — e e 2 da = lim e 7 dz,
V21 J 2m L—=+oo —L+ia

where the final integral is considered over the line Im(z) = a in the complex plane.

(b) Show, using the techniques that we learned about moving the curve of integration in the
complex plane for integrals of holomorphic functions, that

L+ia 2 +o00 2
lim e 2 dz= / e 2z dx.

L—=+o0 —L+ia 00

Hint: In the case a > 0 (the case a < 0 is completely analogous), you might want to apply
Cauchy’s theorem to the rectangle which is the boundary of {—L < Re(z) < L} N {0 <
Im(z) < a}. What happens to the integral over the edges at Re(z) = L as L — +o0?
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(c) Use polar coordinates to compute the integral

too o 2 too pdoo 9 0
(/ ez dx) :/ / e dzxdy.

(d) Combining the above calculations, show that

(e) Using the general properties of the Fourier transform, show that, for any o # 0,

22 2,2

Fle 2](a) = |ofe™"=".

(4.) Let f:[0,400) — C be a piecewise continuous function.

(a) Suppose that there exists some vy € R such that we have

+o0
/ |f(t)|e " dt < +o0.
0

Show that, for any v > 79, we have for the function ¢ - f(¢):

+oo
/ it F(8)]e=" dt < +oo.
0

(Hint: Show that t < Cel' ™0 for some constant C > 0 independent of t.)

(b) Recall that a v € R is called an abscissa of convergence for the Laplace transform L[f](z)
of f if, for every z € C with Re(z) > 7, the integral defining L[f](z) is well-defined
(“converges absolutely”), that is to say:

+oo
/ |f(t)]le | dt < +oo.
0

Using the previous part of the exercise, show that, if 7y is an abscissa of convergence
for L[f(t)], then vy is also an abscissa of convergence for L[t - f(t)] (and, therefore, by
repeating the same process, also for L[t" f(t)] for any n € N).
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Solutions

1. (a)

(b)

Let z = ¢ 0 € [0, 27], be the parametrization of the unit circle v = {|z| = 1}, so that:
1 1 1 1 1 1 d
cos(0) = 3 (Z + ;) , sin(20) = % <z2 - ;) , cos(20) = 3 (22 + ?> , df = i

Then, the numerator becomes:

cos(0) sin(26) — (% (z + %)) (% (z2 _ %)) S CRTRTERr

And the denominator:
10 + 322+ 3272

5+ 3cos(20) = 5

So the integrand becomes:

1 2242—zt—273\ dz 1 B4+2z—2z1—273
- " 1 2 ) - dZ
4i 5(10 4322 4 3272)

iz 2 2(10+ 322 + 3272)

Now we evaluate:

/Z3+Z_Z_1_Z_3dz;/ (z)% (Z)_zg—i-z—z_l—z_?’
2104322 +322) LI I T 0322+ 3:2)

We could proceed by finding the roots of the denominator inside the unit disc, evaluate
the residues etc, but there is a faster way: Note that the inversion z — w = % maps
the unit circle to the unit circle with the opposite parametrisation (since if z = ¢, then

w = e~ ), and we have

z
and
d:_ _dv
2w
Therefore,
dz dw
1= [0 Z = [ oty (-2) = -1
N z . w
so [ =0.

We begin by using the identity:

1— 2
sin®z = —COS( $>,

2

to write:
sin® (22) 1 —cos(50)

2
sin® (%) 1 —cos(f)
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Now we change variables using z = €%, so that:

1 d
cos(nb) = 5 (z"+27"), df= i
Thus, we have:
2 _ 5 5
1 — cos(50) (2" +27%) = Z2 © :
2 _ 4 1
1 — cos(0) 22 :

So the integrand becomes:

1 —cos(50) 2—2"—27"
1—cos(d) 2—z—2"1’

/2772 2> — 27 dz
0 2—z—2% 1z

Multiply numerator and denominator by 2° to remove negative powers:

1 225 — 210 -1
= - 5 6 1 dz.
i Jppmr 2(22° — 28 — 21)

and the integral becomes:

Factor the denominator:

22° — 20—t =242 22— 1) = -2z - 1)2
So the integrand becomes:
B 22° — 210 -1
J(z) = —iz5(z — 1)%°
At first glance, it might seem that we are integrating through the smgularlty at z = 1.
However, this is a regular point, since the numerator factorizes as 22° — 210 —(2°—1)?

so we have

2,5 — 210 1 (2% —1)2 ((z—l)(z4+z3—|—z2—|—z—|—1))2 (A2 4+ 22+ 2+ 1)2

) == - - . -

—iz5(z —1)2  iz5(z — 1)? i2°(z —1)2 iz°

We now compute the integral using the residue theorem:
/ f(z)dz = 2miRes,— f.
v={lzI=1}

Since [ is expressed already in powers of z, we can immediately calculate the residue by
finding the coeffcient of the z=1 term:

(428422 4+ 24+1)?
25

f(z) =
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(c)

B A 221 4+22T 4225 4225 4220 4225 4224 + 223 4223 + 222+ 22

N 125
= —i(zf“r’ + 2274 43273 4 45 44324222 + 23),

so Res.—o f = —5i and, thus,

/f(z) dz = 10m.

o

We use the substitution z = ¢, which gives:

1 1 dz
cos(#) 5 (z+ z) : o
The integrand becomes:

1 1
1—2pcos() +p*> 1 —p(z+2z71) +p?

Multiply numerator and denominator by z to eliminate negative powers:

1 @ 1 dz

1—plz+2"V)+p® iz i .z(l—pz—f—i—pQ)'

1 dz
T —p22+ (1+p?)z—p
Let
1
flz) = —p2+ (1+p*)z—p
We now compute the contour integral:
@ dz = ? -Res,—., f(2) = 27 - Res.—,, f(2),
|2|=1

where zj is the pole inside the unit circle.
To find the poles, solve:
—p2+(1+p*)z—p=0.

Using the quadratic formula:

B 14+ p*+ /(14 p?)?2—4p? 1+ pPE(1-p?)
z = o = 5 .

This gives two roots:

144+ (1-p?) 2
2p 2p p 2p

21

Since 0 < p < 1, we have:
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- z = p lies inside the unit circle,
- z= 110 lies outside the unit circle.

Thus, the only pole inside the unit circle is at z = p, and it is a simple pole. To compute
its residue, we use:

Res,,f(2) = lim(z — p) f(2).

Z—p

Factor the denominator:

—p2? + (1 +p*)z—p=—p(z —p) (Z—}),

SO: - 1
(AR Sy
Then: . .
(z —p)f(2) = , so lim(z —p)f(z) =
w(-i) »(r-3)
Simplify: X . .
S p(E) —P-n 1P

Thus, the integral is:

2
1 1 2
/ d) =2 —— = | |
o 1—2pcosf+p 1—p 1—p

2. We want to compute the Fourier transform of the function

x
fla) = 150
that is, .
f(a) = \/127/_00 1fx4e’md:c, a € R.
We consider the complex function '
ze '
f(z) = 1124

The poles of f(z) are the solutions to 1+ 2* = 0 = 2* = —1, which are:

. (2k+1)m
L

2z =¢€ , k=0,1,23.
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These are explicitly:

2 = 67,7r/47 29 = 67,37r/47 23 = 67,57r/47 24 = 6277r/4'

Upper half-plane poles: zi, 2,
Lower half-plane poles: z3, 24

The poles are simple (since 2z + 1= (z — 21)(z — 22)(2 — 23)(2 — z1). The residue at z; can be
computed via the formula Res,_., (f) = lim,—,,, ((# — 2zx)f(2)). Alternatively, we can directly

use the formulas from Exercise 4 from Series 7, for functions of the form z 22 (which says that,

in the case when p(zp) # 0 and 2z is a simple root of ¢(z), we have Res,_.,(f) = %):
Zkefiazk zkefiazk efmz;C
ReSZ:Zk(f> - - 4 3 - 4 2
4(1+ 2% 2k 2
Z=Z

We close the contour in the complex plane according to the sign of a:

— If @ < 0, then e decays in the upper half-plane (since, for z = z + iy, we have
le7] = |eT¥TW| = W g0 |e7"*| < 1 when a < 0 and y > 0). So we close the contour
in the upper half-plane, enclosing 21, z5, similarly to what we have already seen in class:
For R > 0 tending to oo, we construct the closed loop which goes from —R to R on the
real axis and then follows the half circle of radius R on the upper hal-plane. Following
this process, as we have seen in the class, we get:

[e’e) T i ‘ ‘ e—iazl e—iazg
/_OO L dx = 2mi (Res,—., (f) + Res,—.,(f)) = 2mi ( 17 + 2 ) :

— If a > 0, then e % decays in the lower half-plane. So we close the contour in the lower
half-plane, enclosing 23, z4.

Important remark. When closing the loop in the lower half plane, if we give our curve
a positive (i.e. counterclockwise) orientation, then the part of the curve on the real line is
parametrized from +R to —R (make a drawing to verify this). Thus, the original integral
(which corresponds to a parametrization going from — R to +R is minus the result obtained
from the positively oriented loop. This explains the — sign below (in comparison to what
we would naively expect from the residue theorem).

Thus, we get

—iaz3

oo T i . e e—ia24
/_OO L dr = —2mi (Res,—,(f) + Res,—.,(f)) = —2mi ( 2 + 122 ) .

—iaz1

e*iaZQ
V2w + , a <0,
T ( 42% 42%)
» e~ tazs e—taza
—V/ 27 + , a>0,

2 2
4z5 4z
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where

. (2k+1)m
L

Zr =€ , k=0,1,2,3.

3. (a) We want to compute the Fourier transform of the Gaussian function

(b)

22

flx)=e"7,

which is defined as

~

1 too 22
a) = —— e e 2 dr, acR.
fo-—= [

We perform a change of variables by setting
z=x+1a, sothat x=2z—1ia, and dz=dzx.

Thus, as « runs from —oo to +oo, the variable z runs along the horizontal line Im(z) = a
in the complex plane. Now substitute:

v = (2 —ia)* = 2% — 2iaz — a*.

Hence,
2

_zZ — 1,2 _902—qa2 _zZ
e~ T —¢ 5 (2% —2iaz a):e

Substituting into the Fourier transform expression:

fla) = — / i % g
a) = —— e e 2% 2 dz.
V21 ) oo

Simplifying the exponentials:

thus:

N e—% +o0+ia 2
f(a) = / e 7 dz.
V2T —oo+ia

Introducing the limit as L — +00, we can write:

N 67§ L+ia 2
fla) = lim e 7 dz|

2m L=4o0 J 1 4iq

We want to show that

L+ia 2 +00 9
. _Z T
lim e 2 dz= / e 2 dx

L—+oo —L+1a 00

by moving the contour of integration.
First of all, consider the rectangle in the complex plane with vertices at

—L, L, L+1ia, —L+1a.
Let 71,72, 73, 74 denote the four edges:
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~1: from —L to L along the real axis,
v9: from L to L + ia vertically,
v3: from L + ia to —L + <a horizontally,

EO N

v4: from —L 4+ ta down to —L vertically.

)

z

Since e~z is an entire function, by Cauchy’s theorem, the integral over the boundary

vanishes: ,
/ e~ T dz =0,
ARy,
that is,
z2 z2 2
/ e_2dz+/ e_2dz+/ e 2 dz—l—/ e 2dz=0
Y1 Y2 Y3 Y4
Thus:

Z2 22 Z2 22
/e_2dz——(/ 6_2d2+/6—2d2+/6_2d2>.
Y3 71 Y2 Y4

- Along v, z =2 € R, so

As L — +o00, we have:

L 2 +o0 2
. _x _z
lim e 2 dx —/ e 2 dx.

L—+oc0 I .

- Along 7, and 7y, (the vertical sides), parametrize:
Y2 - Z:L+Zy7 y6[07a]7

Y: z=-L+iy, yé€E]la,0.
The modulus of the integrand is (for z = = + iy):

22

[tz

_ ‘eﬁ(ﬁy?)em — @)

where x = & L.
Thus:

22

Lir2_,2 1(72_,2 L2 42
‘6_7 = e_i(L ~y°) < e_i(L —a%) _ 6_76%.

Therefore, the integrals over v, and ~, satisfy:

22 L2 a2
/e_2dz <ae ze?,
2

2 L2 42
/e2dz <ae zez.
Y4

Both go to zero exponentially fast as L — +o0.
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Thus, taking the limit L. — +o00, the contributions of 5 and 4 vanish, and we obtain:

L+ia 2 +00 5
lim e 2dz= / e 2 dx,

L—=+o0 —L+1ia 00

as required.

(c) We change variables to polar coordinates:
xr=rcosf, y=rsinb,

so that
22 +y*=1r? and daxdy=rdrdb.

Thus, the double integral becomes

+o00 ~+o00 2 4y? 27 +o00 .2
/ / e 2 drdy= / / e 2rdrdd.
oo J oo 0 0

First, we compute the integral over r:
+oo 2
/ re” 2z dr.
0
2

u:g, so that du = rdr.

—+00 2 —+o0o n
_r_ — — o0
/ re 2dr:/ e "du:[—e "}0 =1.
0 0

Next, we compute the integral over 6:

27
/ df = 2.
0

Make the substitution

Thus,

Multiplying the two results, we find

Thus, taking the square root of both sides,

+o0 2
/ e~ T dr = V21|

o0

Page 10



EPFL- Spring 2025
Series 8

MATH 207(c)—Analysis IV
(d) From part (a), we have

G. Moschidis
8 Apr. 2025

e~ L+ia
fla) =

2

. _E
X lim e 2 dz.
\/ 27‘( L—+oo

—L+ia
Using the results from parts (b) and (c),

L+ia 2
lim e 2 dz = V2m,
L—=+o0 —L+1ia
we substitute and simplify:
a2
A e 2 a2
fla) = X V2r=e 2
(a) = —=xV
Since ,
fla)y=e"7,
we conclude that

for o #0.
Notice that

g(@) = f (g) :
where

N

f@)=e %

transform:

Flrowle) = 7 (5).
for any A # 0.

Here, A =1, so

Flgl(a) = |o| Ff](oa).

From previous parts, we know that

Flfla) = %
Thus,

Thus, g(z) is a scaled version of f(x). Recall the general scaling property of the Fourier
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Substituting back, we find:
0'2(12

Flgl(a) = lole"%".

Thus, we have shown:

F (e-iz) (a) = |ole™ "=

4. (a) We are given a piecewise continuous function f : [0,+00) — C such that there exists
Yo € R with

+o0
/ |f(t)|e " dt < +o0.
0

We need to show that, for any v > ~q,
+o00
/ [tf(t)]e " dt < +oo.
0

Since v > 7, the quantity v — v > 0.
We claim that there exists a constant C' > 0 such that for all ¢ > 0,

t < Ce(r—0)t.

Proof of the claim: Consider the function

Observe that:

- g<0) = 07
As t — 400, g(t) — 0 as can be verified easily using e.g. L’'Hopital’s rule (in general
the exponential grows faster than any polynomial),

g is continuous on [0, +00),

- Therefore, g(t) achieves a maximum value M > 0 on [0, +00).

Thus, for all t > 0,
g(t) < M,

that is,
t < Me(r—0)t

Setting C' = M completes the proof of the claim.
Using the estimate t < Ce(V=10) we have

|tf(t)|e_7t — |f<t)’t€—’7t < C|f(t>|6_(70)t.
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Thus,
+oo “+o0o
/ tF ()] dt < C / F()le dt.
0 0

By assumption, the right-hand side is finite:

+o0
/ |f(t)|e " dt < +o0.
0

Therefore,

—+00
/ [tf(t)]e " dt < +o0
0

for any v > .

Suppose that 79 € R is an abscissa of convergence for the Laplace transform £[f](z), that
is, for every z € C with Re(z) > 7o,

+00 +oo
/ @)l dt = / £ df < too.
0 0

For any 71 > 70, choosing a z with Re(z) = 71, the above implies that

+oo
/ |f(t)|e " dt < +o00 for any 71 > . (1)
0

We need to show that v, is also an abscissa of convergence for L[t - f(¢)](z), that is,
+o00
/ tf(t)|e B dt < 400 for all Re(z) > .
0

For any z € C with Re(z) = v > 70, let us choose some v; € (7,7). From part (a), we
know that if

“+o0o
/ F(O)le" dt < +oo,
0
then for any v > 74,

+oo
/ £ (1) dt < +o0.
0

Thus, since Re(z) = v and the first inequality is true in view of (1), we deduce the requied
estimate

“+o00
/ itf(t)|e Re@! dt < 400.
0

Thus, the Laplace transform L[tf(t)](z) converges absolutely for all Re(z) > 7.

By applying the same reasoning iteratively, we conclude that if 7y is an abscissa of con-
vergence for L£[f](z), then it is also an abscissa for L[t" f(t)](z) for all n € N
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